

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Structured and object-oriented programming

Course

Field of study

Control and Robotics

Area of study (specialization)

Level of study

First-cycle studies

Form of study part-time

Year/Semester

2/3

Profile of study

general academic

Course offered in

Other (e.g. online)

polish

Requirements

compulsory

Number of hours

Lecture

Laboratory classes

18 Tutorials

Projects/seminars

18

Number of credit points

5

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

Piotr Kaczmarek Ph.D

Prerequisites

A student starting this subject should have basic knowledge of computer hardware and its operation, and of the courses of semester I: Fundamentals of Computer Science and Information Technology.

Course objective

Purpose of the course:

- 1. Acquainting with the methodology and principles of structured and object-oriented programming using the C ++ programming language in the scope extended to that presented in semester I and elements of Python.
- 2. Acquainting with dynamic data structures and their implementation in C ++ and Python. Developing practical skills of adequate use of structures depending on the requirements

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 3. Ability to implement and adapt standard algorithms to solve a variety of problems, and issues related to computational complexity and optimization
- 4. Knowledge of basic application design patterns and an example of their use

Course-related learning outcomes

Knowledge

The graduate has an orderly knowledge of selected algorithms and data structures as well as methodology and techniques of procedural and object-oriented programming. The graduate knows and understands basic processes occurring in the software development cycle.

Skills

The graduate can construct an algorithm for a simple engineering task and implement, test and run it in a selected development environment on a PC for selected operating systems.

Social competences

The graduate is ready to critically evaluate his or her knowledge. The graduate understands the need for and knows the possibilities of continuous learning - improving professional, personal and social competences, the graduate is able to inspire and organize the learning process of others.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: written exam in the scope of the lecture

Laboratory: checking practical skills in the field of algorithms and data structures of object-oriented programming in C ++, and the ability to use C ++ STL libraries. The grade is a product of 2 tests, class work and homework.

Programme content

The program of the lecture and laboratory classes covers the following issues:

- dynamic data structures (array, list, tree, hash table, stack, graph) structure, implementation in C ++, as well as performance and applications,
- algorithms: algorithm complexity, recursive and iterated approach, sorting and searching, algorithms for tree structures, graph algorithms
- design patterns (including Model Control View, Model View, Singleton, Dekorator, Strategy, Observator, Adapter)
- STL C ++ 11,14 (containers and algorithms, predicates, regular expressions), generic programming (templates).

Teaching methods

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 1. Lecture: multimedia presentation, illustrated with examples given on the board, and with programs created during the classes.
- 2. Laboratory exercises: practical exercise on C++, supported by didactic materials placed on the elearning platform

Bibliography

Basic

- 1. Opus Magnum C++11 : programowanie w języku C++. T. 1-3 / Jerzy Grębosz. Wydawnictwo Helion, cop. 2018.
- 2. materiały dydaktyczne udostępnione dla zajęć laboratoryjnych i wykładu: https://moodle.put.poznan.pl
- 3. Brad Miller and David Ranum "Problem Solving with Algorithms and Data Structures using Python" Luther College 2018 (dostępna online)

Additional

- 1. B. Eckel, Thinking In C++, Edycja polska, Wydawnictwo Helion
- 2. Podstawy programowania C i C++ skrypt/P. Kaczmarek, D. Belter.

Wydawnictwo Politechniki Poznańskiej 2011

Breakdown of average student's workload

	Hours	ECTS
Total workload	124	5
Classes requiring direct contact with the teacher	38	2
Student's own work (literature studies, preparation for	86	3
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

3

delete or add other activities as appropriate

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań